Flight Test Safety Workshop 27-30 April 2009 Ottawa, Ontario, Canada

777 Freighter Aileron Vibration Occurrence

Flight Test Safety Workshop Ottawa, Ontario, Canada April 29-30, 2009

Van Chaney, Boeing 777 Deputy Chief Pilot Paul Bolds-Moorehead, Boeing 777 Stability & Control Senior Lead Engineer

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Re-test flights
- Lessons Learned
- Summary

Introductions

- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Re-test flights
- Lessons Learned
- Summary

777 Freighter First Flight

777 Introduction Family Evolution

Summary of Changes: 777-200LR to 777F

Addition of Maneuver Load Alleviation (MLA) function in Primary Flight Computers

777F Airplane Description Flight Envelope

777F Aileron Vibration - FTSW 2009

777F Airplane Description GW/CG Envelope

777F Aileron Vibration - FTSW 2009

777F Airplane Description Maneuver Load Alleviation

Maneuver Load Alleviation (MLA)

- Purpose: Reduce wing bending loads due to positive maneuver conditions
- Function: Symmetrically deflects some lateral control surfaces as a function of normal load factor
- Benefit: Forward CG expansion without additional structure
- Application:

777F Airplane Description MLA Details

Design Intent:

 a) Handling Qualities unchanged during normal maneuvers
b) Handling Quality changes during elevated "g" maneuvers to be imperceptible

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Re-test flights
- Lessons Learned
- Summary

Early Testing...

First Flight: July 14th, 2008

- Typical Boeing first flight profile manual column, wheel, rudder kicks.
- No MLA operation.

Second Flight: July 16th, 2008

Completed conditions not performed on first flight required to commence planned test program

Modal Stability Flight Testing: July 26-29, 2008

- To evaluate interactions between MLA control law and airplane structure
- First discovered aileron vibration on 3rd flight (7/26/2008)

MLA dedicated testing and all other planned testing (smoke, etc.)

Put on hold until vibration issue could be discussed and/or fixed.

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Re-test flights
- Lessons Learned
- Summary

Aileron vibration discovery flights

Flutter-type testing

- 2 altitudes and increasing Mach numbers
 - Manual controller "kicks"
 - Elevator frequency sweeps
 - Roller Coasters and "kicks" in turns (elevated g)
- Aileron vibration occurred with trailing edge up deflections of ailerons.
 - Ailerons had never been used previously at these speeds due to aileron lock-out function.
 - With additional MLA g bias applied (e.g.- PFC thinks it's under a 1.8 G load): column kicks, shallow bank turns exhibited vibration
 - Without MLA g bias: 60 deg bank turns and roller coaster maneuvers to higher g levels showed vibration

Aileron Vibration Details

Pilot comments on Aileron Vibration:

- Alarming."
- "Feels like driving over a washboard road."
- "Feels like something is going to come off."
- "Distracting and you naturally want to unload and slow down"

Causal factor unknown.

- Potential contributing factors include:
- 1. Aileron deflection angle for vibration corresponds to approximately zero hinge moment
- 2. A "scoop" is created between the mass balance tower and the lower surface of the wing when the aileron is deflected

Aileron Vibration Video

Aileron Deflection Angle (deg) Measured at inboard actuator

Aileron Vibration Details

Aileron Vibration Mapping

777 Outboard Aileron Balance Tower

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- **To fix or not to fix ?**
- Re-test flights
- Lessons Learned
- Summary

To fix or not to fix ?

Likelihood of occurrence in service (1.9g event)

Remotely encountered, if ever, in revenue service

Pilot opinion

- Needs to be fixed !
- Avoidance maneuver consequences
- Distracting (flight deck vibration cert issue)

Flutter concern

No issue – mass balanced surface

Fatigue concern

Further data required

Economics (Management opinion)

Desire to not spend money because outside the "normal" envelope

Potential remedies

Aerodynamic modifications

- External wing treatments
- Aerodynamic sealing
- Internal flow diversion

Flight control software modifications

- Change to basic MLA aileron travel schedule
- Addition of aileron "No-Dwell zone" function

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Potential remedies
- Re-test flights
- Lessons Learned
- Summary

Re-test flights : Test Plan

Flight test on August 6 with additional instrumentation and angle iron added

- Similar test conditions as before (kicks and turns)
- Two altitudes (including one lower than previous)
- Expected vibration and successfully repeated it

Flight test on August 18 with modified flight control law for MLA (aileron no-dwell zone functionality)

- Exclusively did shallow turns (with and without 0.8 g bias)
- Tested with rollout configuration and with no-dwell active
- Successfully eliminated vibration with no-dwell function

Re-test flights : Aileron Vibration Investigation

New Flight Test Parts/Instrumentation installed for:

Right Wing Aileron:

- Angle Iron attached in front of the outboard aileron balance tower.
- Idea: Can we affect (not eliminate) the vibration by modifying local flow?

Left Wing Aileron:

- Kulite pressure sensor to measure pressures in the cavity of balance tower
- Strain gauge added to outboard aileron hinge for fatigue analysis
- Accelerometer added to outboard trailing edge for loads analysis.

Re-test flights : Aileron Vibration Mapping

Re-test flights : MLA Aileron "No Dwell" Zone

777F MLA Flight Testing (once vibration eliminated)

Steep Turns

Determine if MLA interferes with pilot's ability to perform maneuver.

Rapid Elevator Inputs / Avoidance Maneuvers

Ensure acceptable performance with MLA

Wind-Up Turns

Flown at conditions where deterrent buffet would be >= 2.5 g's

Roller Coasters

Evaluate handling qualities in pitch axis as MLA engages and disengages

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Potential remedies
- Re-test flights
- Lessons Learned
- Summary

Lessons Learned

Fly-By-Wire airplane control laws present opportunities to remedy issues such as this

Team approach to problem solving is required
Especially when pilot opinion and engineering data differ

- The "right thing" will still prevail once thorough communication occurs
- Important to capture lessons learned on specific technical "discoveries" to share between programs

Pilot distraction needs to be considered as certification issue

- Introductions
- 777F airplane description/background
- Original flight test plans
- Aileron vibration discovery flights
- To fix or not to fix ?
- Potential remedies
- Re-test flights
- Lessons Learned
- Summary

Never assume that a test program will escape problems, no matter how seemingly "minor" the effort is !

Flight Test Safety Workshop 27-30 April 2009 Ottawa, Ontario, Canada

