Flight Test Safety Workshop – New Orleans, 23th to 25th Apr 2013

Embraer Risk Assessment

"Three Flags" Method

Maximilian Kleinubing – BSc Flight Test Engineer maximilian.kleinubing@embraer.com.br How to avoid accidents during experimental flight testing ?

1935 - Prototype crashed on take-off due to locked control surfaces.

1943 - Second of top-secret prototype bombers catched fire20 minutes after takeoff from an airfield and crashed into a plant.

1970 - First prototype crashed on its second flight after a hydraulic systems failure.

1980 - Second prototype crashed during a simulated landing with no hydraulic power.

1989 - First prototype crashed on its sixth flight, when attempting to land due to airplane-pilot coupling.

1994 - Prototype crashed while simulating an engine failure on climbout.

2003 – Second prototype crashed due to lateral loss of control at high speed characteristics tests.

2007 - Second prototype crashed during demonstration flight near the factory due to elevator flutter.

2009 - Third prototype crashed during a high speed run.

2011 – Sixth prototype crashed during takeoff performance tests.

Dev/Experimental Phase Steps

What can be added in these steps to enhance safety ?

- Introduction
- 2. Objective
- 3. References
- 4. Flight Envelope Analysis
 - . Test Point Exec Analysis
- 6. System Failures Analysis
- 7. Risk Management
 - . Conclusions

Introduction

Risk Assessment Methodology has a **key** impact on safety during flight and ground tests.

It is considered that the Methodology MUST be **concise**, **effective** and should have the **ability to Unveil the hazards** involved in the tests.

The goal of this presentation is to show the "**Three Flags**" Flight Test Risk Assessment Method.

References

- Embraer ENS 00650 rev 6 Risk Assessment
- FAA Order 4040.26A/B Aircraft Certification Service Flight Test Risk Management Program

ERTICAL

EMBRAER FT RISK ASSESSMENT PHASES

RISK MANAGEMENT

Flight Envelope

- Operational Envelope
- Design Envelope
- Limited Envelope
- Screen Factor

x axis

y axis

Definitions

Screen Factor Tool

I – **Detect Expertise on the Proposed Tests**

Previous tests are sufficient to predict a safe behavior of the new proposed tests ?

II – Detect Limitations of Modeling Tools

Best available modeling tools are sufficient to predict a safe behavior for the new proposed tests?

III – Detect Type of Possible Effects of the Proposed Tests

Hazardous or catastrophic effects might result from the proposed tests if predictions are incorrect?

Test Point Execution

Considering that you might NOT have performed the

maneuver ever before, the pilot can count only with:

(1) Flight Experience
(2) Expertise on the aircraft
(3) Expertise on that type of maneuver
(4) Lessons Learned

THREE FLAGS Test Point Execution SCALE

I – Detect training or gradual approach

fecessities Is	Try-outs Training	Needed ?	And	Can the lack or necessity of these
	Gradual Ap	proches		affect Safety ?

II – Detect Errors Tolerances

9	Do	Test Tolerances Positioning Tol.	Affect safety if extrapolated or disregarded ?	And	Are they Considered to be tight ?	
U						

III – Detect Recovering or Discontinuing Possibilities

9	When	Recovering Discontinuing	The maneuver, is there a probable chance to get into an unsafe situation ?
U)		

System Failures

System Failures Analysis

- Based on AMJ 1309 Safety Assessment (FAA Fail Safe Design).
- Takes credit of the System Safety Assessment reports.
- However, flight test crew **MUST** define failures **effects**.

SYSTEM FAILURES EVALUATION

FINAL PROBA	HIGHLY PROBABLE P > 10e-3	LOW	MEDIUM	HIGH	UNACCEPTABLE	UNACCEPTABLE	
	PROBABLE 10e-3 > P > 10e-5	LOW	AMJ	AUM 1300	HIGH	UNACCEPTABLE	
	REMOTE 10e-5 > P > 10e-7	LOW	LOW	Ana	MEDIUM	HIGH	
	EXTREMALLY REMOTE 10e-7 > P > 10e-9	LOW	LOW	LOW	SAS - Fail Safe	MEDIUM	
зігіт	IMPROBABLE P < 10e-9	LOW	LOW	LOW	LOW	esign	
		NO SAFETY EFFECT MINOR		MAJOR	HAZARDOUS	CATASTROPHIC	
		FAILURE EFFECT			REEFFECT		
						CONTRACTOR OF	

RISK DETERMINATION

RISK CLASSIFICATION (CR)

Management

Risk Management

-As many as you want.

-Emphasize main hazards of the test.

-Agree upon Minimizing and Mitigation procedures.

-Agree upon EMERGENCY Procedures.

Ex.

V_{MCG}

• HAZARD: Landing gear collapse.

RISK MINIMIZATION:

CAUSE(S): Shimmy and ground/flight loads;

Pro-ACTIVE

1. According to the theoretical predictions the new caster is conservative in relation to shimmy. However, the new landing gear shimmy characteristics were not simulated. A ground test with and without the steering spring will be performed to access the shimmy and control characteristics of the new nose landing gear.

2. The landing gear loads predicted are 1% higher than in previous design.

RISK MITIGATION

- 1. Firefighters standing by.
- 2. Ambulance standing by.
- EMERGENCY PROCEDURES
 - 1. REDUCE ENGINES to IDLE.
 - 2. USE STEERING to CONTROL the Aircraft.

DESIRABLE BYPRODUCTS OF THE METHOD

METEOROLOGICAL CONDITIONS

Risk Classification	METEOROLOGICAL CONDITION (TEST AREA AND DESTINATION/ALTERNATIVE)		
LOW	VMC/IMC (according to test requirements)		
MEDIUM	VMC/IMC (according to test requirements)		
HIGH	VMC (necessary)		
1ST FLIGHT	VMC (necessary)		

CREW MINIMUM REQUIREMENTS

Pilots

Classification	Experience (years)	Total Flight Experience (flight hours)	Minimum Pilot Crew Parte 23	Minimum Pilot Crew Parte 25
LOW	≥ 1	≥ 1.000	1 PPA ⁽¹⁾	2 PPA ⁽¹⁾
MEDIUM	≥2	≥ 1.000	1 PPA ⁽¹⁾	2 PPA ⁽¹⁾
HIGH	≥5	≥ 1.500	2 PPA ⁽¹⁾	2 PPA ⁽¹⁾
1st Flight	≥ 10	≥ 2.000	2 PPA ⁽¹⁾	2 PPA ⁽¹⁾

Flight Test Engineers

Classification	Experience (years)	Total Flight Experience (flight hours)	FTE ₍₃₎ Rate	
LOW	-	≥ 10	С	
MEDIUM	≥ 1	≥ 100	В	
HIGH	≥ 3	≥ 200	А	
1st Flight	≥ 5	≥ 500	A*	
			EXAMP	LE

Is it possible to avoid accidents during experimental flight testing ?

- The method is easy to use.
- Uses the **Expertise Accumulated** on SSA.
- Get together Design+Development+Production
 Philosophies.

Conclusions

• The method is ALIVE and depends on the experience of the

team.

- It depends on **INFORMATION**.
- **CANNOT** substitute the discussions and analysis.
- The Three Flags Risk Assessment Method is a

TRUSTWORTHY guide for test preparation.

Thank you!

Embraer Risk Assessment "Three Flags" Method "Safety doesn't happen by accident." Anonymous

maximilian.kleinubing@embraer.com.br

"Three Flags" Application Example

Maneuver	Condit	Screen Factor	Envelope	TPE	SF	RC
	Spd/Alt W/CG	1-1-1	Operat	1-1-1	LOW	MID
Roll Response	Spd/Alt W/CG	1-1-0	Limited	1-0-0	MID	MID
	Spd/Alt W/CG	1-0-0	Design	1-1-0	LOW	MID